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Absence of Transport Under a Slowly Varying
Potential in Disordered Systems
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In the tight-binding random Hamiltonian on Zd, we consider the charge trans-
port induced by an electric potential which varies sufficiently slowly in time, and
prove that it is almost surely equal to zero at high disorder. In order to compute
the charge transport, we adopt the adiabatic approximation and prove a weak
form of adiabatic theorem while there is no spectral gap at the Fermi energy.
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1. INTRODUCTION

About four decades ago, Anderson(4) discussed that a certain disorder may
cause materials to have insulating property.

And recently, there is much progress toward the mathematical under-
standing of this phenomenon (e.g., refs. 1�3, 10, 11, 20, 22, etc.) such as
derivation of the exponential decay of the eigenfunctions. In this paper, we
consider the charge transport raised by the time-dependent flux, (6, 13) and
prove that this quantity is zero when the external field varies slowly in
time.

Our model is the standard, tight-binding, random Hamiltonian on
l 2(Zd ):

(H| .)(x) := :
|x& y|=1

.( y)+*V|(x) .(x), . # l 2(Zd ) (1.1)
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*>0 is the coupling constant which represents the strength of disorder
potential. [V|(x)]x # Zd is the independent, identically distributed random
variables on a probability space (0, F, P) such that the probability dis-
tribution of V|(0) has the density r(v) dv, where r # L p(R), 1< p�+�,
and r(v) is compactly supported. It follows that, for a # Zd, there is a
corresponding measure preserving map T a : 0 � 0, such that

U(a) H|U(a)*=HT a| (1.2)

where U(a) is the translation operator on l 2(Zd ): (U(a) .)(x) :=.(x&a).
P is ergodic with respect to T, and [H|]| # 0 is the ergodic family of
bounded self-adjoint operators. Let V(t) be a multiplication operator on
l 2(Zd ): (V(t) .)(x) :=exp[i �t

0 g(x(1), s) ds] .(x), where g(x(1), s): Z_[0, 1]
� R is bounded and periodic in x(1) with period L # N. x(1) is the first
component of x # Zd. We define the time-dependent random Hamiltonian:

H|(t) :=V(t) H| V*(t), t # [0, 1]

or equivalently,

(H|(t) .)(x) := :
|x& y|=1

exp _i |
t

0
( g(x (1), s)& g( y (1), s)) ds& .( y)

+*V|(x) .(x), . # l 2(Zd ) (1.3)

H|(t) describes non-interacting electrons in the random potential *V|(x)
under the time-dependent electric field potential g(x(1), t) [9, Chap. 7].
This formulation was introduced by Avron�Seiler�Yaffe and Klein�
Seiler(6, 13) to study the quantum Hall effect.

We shall prepare some notations which are necessary to define the
charge transport. Let U|(t) be the unitary evolution operator of H|(t)
which satisfies:

i
d
dt

U|(t) .=H|(t) U|(t) ., t # (0, 1)
(1.4)

U|(0) .=., . # l 2(Zd )

Let =F # R be the Fermi energy which can be arbitrary in this paper, and
P|(t) :=/(&�, =F](H|(t)) be the corresponding Fermi projection, where /C

is the characteristic function of the set C/R. For simplicity, we write
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P| :=P|(0). For an operator A on l 2(Zd ), we define T(A) as the trace per
unit volume:

T(A) := lim
|4| � �

1
|4|

trace(/4 A/4) (1.5)

as long as it exists, where 4 :=[x # Zd : |x(i)|�M, i=1,..., d ]/Zd, M # N.
In what follows, we shall define the quantity which we call the charge
transport induced by slowly varying potential. This is based on what was
considered in (refs. 6 and 13). Firstly, we consider the charge transport
from t=0 to t=1, which is defined as the thermal average of the current
operator: J|(t) :=U*|(t) i[H|(t), x] U|(t) at zero temperature, in the
grand canonical ensemble:

j| :=|
1

0
dt T(U*|(t) i[H|(t), x] U|(t) P|) (1.6)

where [A, B] :=AB&BA is the commutator which is defined by those
integral kernels (this will be mentioned in Remark after Lemma 2.1). We
will confirm that j| is well-defined in Lemma 2.4. Secondly, we consider the
limit under which the electric potential varies slowly in time. In order to do
this, we rescale the time s :=t�{ ({>0) and replace t by s. When s varies
from s=0 to s=1, the real time t goes from t=0 to t={, and the electric
potential becomes g(x(1), s)�{. The corresponding time evolution operator
is the solution to:

i
d
ds

U|, {(s) .={H|(s) U|, {(s) ., s # (0, 1)
(1.7)

U|, {(0) .=., . # l 2(Zd )

The charge transport from t=0 to t={ becomes:

j|, { :=|
1

0
ds T(U*|, {(s) i{[H|(s), x] U|, {(s) P|) (1.8)

We define { � � limit of j| as the charge transport induced by slowly
varying electric potential.

_| := lim
{ � �

j|, { (1.9)

Remarks. (1) A typical example of g(x(1), s) is the bounded peri-
odic potential which is modulated in time: g(x(1), s)=h(x(1)�L&t), where
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h(x) is a function of period 1. It was first introduced by Thouless and
Niu(14�16, 21) in their study of quantized adiabatic charge transport. Niu(14)

showed that, in some special choices of h(x) and V(x)#0, there are non-
zero transport (that is, _{0). Therefore, it seems to be plausible to take
g(x(1), s) as an electric potential to study the transport properties.

(2) Since the electric potential becomes g(x(1), s)�{ under the above
scaling, { � � limit is equivalent to the small electric field limit. Thus,
_| can be regarded as the electrical conductivity under the bounded and
time-dependent electric potential g(x(1), s).

(3) There have been some definitions of the electrical conductivity in
the study of quantum Hall effect. The definition of the charge transport in
(refs. 6 and 13) is almost the same as that of ours except the following two
points: (a) usual trace in (refs. 6 and 13) is replaced by the trace per unit
volume here. This replacement seems to be important to consider Anderson
localization, (b) taking average with respect to flux is not necessary here.

The definition of the electrical conductivity in (refs. 7 and 19) is also
similar to that of ours. The difference is: (a) they considered time indepen-
dent Hamiltonian with constant electric field and dissipative term, (b) they
adopted Abel limit to compute the conductivity explicitly, while we will use
adiabatic approximation here.

The main result of this paper is, at high disorder, the charge transport
defined in (1.9) indeed vanishes almost surely.

Theorem 1.1. For sufficiently large *>0, _|=0, for P-a.e. |.

Remarks. (1) More precisely, * is taken large such that *>*0(s)
:=2 &r&1�_

p (2_�(_&s)) d )1�s, for some 0<s<_, where & }&p is the L p(R)
norm, (2) and _ :=1&(1�p) (_=1, if p=+�). On the other hand, our
proof does not apply to the weak disorder case (that is, * is small) even if
=F lies in the localized states, because we can not control the tunneling to
the delocalized states.

(2) The main tool we use to prove Theorem 1.1 is the exponential
decay estimates of the fractional moment of Green's function.(1�3) Thus, the
above assertion also holds to many other Hamiltonians, such as that with
long range hopping terms, or that with periodic background potential.(2)

(3) It is desirable to consider the constant electric field. However, if
we take g(x(1), s) :=x(1), then (a) the proof of Lemma 2.2 in Section 2 fails,
(b) the adiabatic Hamiltonian defined in (1.10) would be unbounded and
analysis of it will not be easy.
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(4) Many people might think that our result is almost trivial because
spectrum of H| is all pure point and corresponding eigenfunctions decay
exponentially. Our opposition to this opinion is: (a) they do not consider
any external fields, (b) We only know that each eigenfunction decays
exponentially at each rate. However, from the statistical mechanics point of
view, we have to consider infinitely many states at the same time at least
near the Fermi energy. And, del Rio et al.(10) suggest that the eigenfunc-
tions of H| do not localize ``uniformly,'' (c) the eigenvalues of H| dis-
tribute densely in the spectrum(20) which implies there is no spectral gap,
and there are infinitely many eigenvalues near the Fermi energy. Since
there might be infinitely small excitation beyond the Fermi energy, our
result seems not to be trivial.

(5) By using Kubo formula, vanishing conductivity follows imme-
diately from the exponential decay estimates of Green's function.(2, 11, 19)

Thus, our result can be regarded as another presentation of the vanishment
of the electrical conductivity except the electric field must be bounded.

In fact, we expect that the excitation beyond the Fermi energy can be
negligible under the weak electric field. In another words, we consider the
adiabatic approximation of j|, { to prove Theorem 1.1. To this end, we
consider the adiabatic evolution operator U A

|, {(s) which satisfies:

i
d
ds

U A
|, {(s) .={H A

|(s) U A
|, {(s) ., s # (0, 1)

(1.10)
U A

|, {(0) .=., . # l 2(Zd )

where H A
|(s) :=H|(s)+(i�{)[P4 |(s), P|(s)] (which is bounded and self-

adjoint on l 2(Zd )). P4 |(s) is the derivative of P|(s) in the operator norm
topology. In fact, P4 |(s)=iV(s)[ g(x, s), P|] V*(s). Since U A

|, {(s) is expected
to approach to U|, {(s) for sufficiently large {, (6, 12, 13) we consider the
adiabatic approximation of j|, { as:

j A
|, { :=|

1

0
ds T(U |, {

A*(s) i{[H A
|(s), x] U A

|, {(s) P|) (1.11)

Our theorem is the corollary of following two propositions.

Proposition 1.2. For sufficiently large *>0, j|, {= j A
|, {+o(1), as

{ � �, for P-a.e. |.

Proposition 1.3. For sufficiently large *>0, j A
|, {=0, for P-a.e. |.
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The rest of this paper is organized as follows. In Section 2, we study
some properties of T, derive rapid decay of U|, {(s) and U A

|, {(s), and
prove the well-definedness of j|, { and j A

|, { . In Section 3, we prove Proposi-
tions 1.2 and 1.3. Proposition 1.3 follows easily from the intertwining
property of U A

|, {(s) (6) and the time reversal invariance of H| . The proof of
Proposition 1.2 needs a sort of adiabatic theorem. Adiabatic theorem is
proved in (refs. 6, 12, and 13) in an abstract setting when =F lies in the
spectral gap. We follow their argument to prove our adiabatic theorem.
Then we will have an additional term which originates from the fact that
there is no spectral gap in our case. We estimate this term by exponential
decay of the fractional moment of Green's function.(1�3)

2. PRELIMINARIES

For an operator A| on l 2(Zd ), we write (x| A| | y) :=($x , A|$y), x,
y # Zd, where ( } , } ) is the inner product on l 2(Zd ), and $x(z) # l 2(Zd ) is
defined as: $x(z)=1 (if z=x), $x(z)=0 (otherwise). We call (x| A| | y)
the integral kernel of A| . We say an operator A| satisfies covariance rela-
tion ((CR) in short), if A| obeys

U(a) A|U*(a)=AT a| (2.1)

whenever a # [x # Zd : x(1)=kL, k # Z]. L was defined in Section 1 to be
the period of g(x(1), s). We introduce some classes of families of operators
on l 2(Zd ):

S: :=[A| an operator on l 2(Zd ): (1) A| satisfies (CR),

(2) \;>0, _C:;>0 s.t. E |(x| A| | y) | :�C:;(x& y) &;]

S := .
:>1

S: , S� := ,
:>1

S:

where (x) :=(1+|x|2)1�2. E stands for the expectation value with respect
to P. We set &A&S: , ; :=(supx, y # Zd (x& y) ; E |(x| A| | y) | :)1�:.

Lemma 2.1. The followings hold for P-a.e. |

(1) Let Ai # S:i
, i=1,..., n such that �n

i=1 :&1
i =1. Then, for ;>1,

}T \ `
n

i=1

Ai+ }�Cn `
n

i=1

&Ai &S:i
, ;:i

(2.2)

where Cn>0 is an universal constant.
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(2) Let Ai # S:i
, i=1, 2, such that �2

i=1 :&1
i =1. Then,

T(A1A2)=T(A2A1) (2.3)

Remark. A| # S: is not necessarily bounded on l 2(Zd ) for fixed
| # 0. In this case, we define the product of two operators A, B # S: by
their integral kernels:

(x| AB | y) := :
z # Zd

(x| A |z)(z| B | y) (2.4)

whenever it exists and finite. In all cases in this paper, we can prove that
for all x, y # Zd, the above expression converges absolutely and (x| AB | y)
is finite for P-a.e. |. Therefore, A| # S: always has a meaning as a function
on 0_Zd_Zd.

Proof. (1) By definition,

(x| `
n

i=1

Ai |x)= :
z1 , z2 ,..., zn&1 # Zd

(x| A1 |z1)(z1 | A2 |z2)

} } } (zn&2 | An&1 |zn&1)(zn&1 | An |x)

We take expectation on both sides and use Fubini's Theorem and Ho� lder's
inequality with respect to P:

E }(x| `
n

i=1

Ai |x) }
�E :

z1 , z2 ,..., zn&1 # Zd

|(x| A1 |z1) | |(z1 | A2 |z2) |

} } } |(zn&2 | An&1 |zn&1) | |(zn&1 | An |x) |

� :
z1 , z2 ,..., zn&1 # Zd

(E |(x| A1 |z1) | :1)1�:1 (E |(z1 | A2 |z2) |:2)1�:2

} } } (E |(zn&2 | An&1 |zn&1) |:n&1)1�:n&1 (E |(zn&1 | An |x) |:n)1�:n

� :
z1 , z2 ,..., zn&1 # Zd

&A1 &S:1
, ;:1

(x&z1) &; &A2&S:2
, ;:2

(z1&z2) &;

} } } &An&1&S:n&1
, ;:n&1

(zn&2&zn&1) &; &An&S:n
, ;:n

(zn&1&x) &;

�Cn `
n

i=1

&Ai&S:i
, ;:i
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Thus, it suffices to show the following equation which follows from
Birkhoff 's ergodic theorem:

T \ `
n

i=1

Ai+=
1
L

:
L

x(1)=1

E (x| `
n

i=1

Ai |x) , a.e. | (2.5)

where x(i)=0, i=2,..., d.

(2) We write x # Zd as x=( p, q), p # Z, q # Zd&1. From (2.5),

T(A1 A2)=
1
L

:
L

p=1

E :
k # Z, r # Zd&1

:
L

q=1

( p, 0| A1, | |kL+q, r)

_(kL+q, r| A2, | | p, 0) (2.6)

for a.e. |. Since A1, | , A2, | satisfy (CR), we have

( p, 0| A1, | |kL+q, r)=(&kL+ p, &r| A1, T&kL9 &r� | |q, 0) (2.7)

(kL+q, r| A2, | | p, 0)=(q, 0| A2, T&kL9 &r� | |&kL+ p, &r) (2.8)

where L9 :=(L, 0) # Zd, r� :=(0, r) # Zd.
We substitute (2.7) and (2.8) into (2.6), and use Fubini's theorem

(which is permitted by Lemma 2.1 (1)). Therefore,

T(A1 A2)=
1
L

:
L

p=1

:
k # Z, r # Zd&1

:
L

q=1

E (q, 0| A2, T&kL9 &r� | |&kL+ p, &r)

_(&kL+ p, &r| A1, T&kL9 &r� | |q, 0)

=
1
L

:
L

q=1

E :
k # Z, r # Zd&1

:
L

p=1

(q, 0| A2, | |kL+ p, r)

_(kL+ p, r| A1, | |q, 0)

=T(A2 A1) K

The following lemma implies that electrons are still localized even
under the electric field, and it is here that we have to restrict our analysis
to bounded electric potential.

Lemma 2.2. For arbitrary :>0, there exists a constant C:>0
such that

E |(x| U|, {(s) | y) |�C: (x& y) &: (2.9)

E |(x| U A
|, {(s) | y) |�C: (x& y) &: (2.10)
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for *>0 sufficiently large, where C: is independent of x, y # Zd, s # [0, 1],
and {>0.

Proof. (1) At first, we prove (2.9), (2.10) when d=1.
Let U� |, {(s), U� A

|, {(s) be the unitary evolution operators of time-
dependent Schro� dinger equations:

i
d
ds

U� |, {(s) .={ \H|+
1
{

g(x, s)+ U� |, {(s) .

U� |, {(0) .=. (2.11)

i
d
ds

U� A
|, {(s) .={ \H|+

1
{

g(x, s)+
1
{

[[P| , g(x, s)], P|]+ U� A
|, {(s) .

U� A
|, {(0) .=., s # (0, 1), . # l 2(Z) (2.12)

It follows that [9, Chap. 7]

U|, {(s)=V(s) U� |, {(s), U A
|, {(s)=V(s) U� A

|, {(s)

Therefore (2.9), (2.10) are equivalent to the rapid decay of U� |, {(s), U� A
|, {(s)

respectively. We will only show the decay of U� A
|, {(s) (that is,

E |(x| U� A
|, {(s) | y) |�C: (x& y) &:), because the proof of the decay of

U� |, {(s) is similar.
When x= y, this is obvious because U� A

|, {(s) is bounded on l 2(Z), so
that we will show

E |(x| U� A
|, {(s) | y) |�C: |x& y|&:

when x{ y. U� A
|, {(s) can be written by Dyson expansion which converges

in operator norm:

U� A
|, {(s)= :

�

j=0

Tj (s)

where T0(s) :=e&i{sH|, and for j�1,

Tj (s) :=(&i) j |
0�� j

i=1 si�s
ds1 ds2 } } } dsj U 0

|, { \s& :
j

i=1

si+ X| \ :
j

i=1

si+
_U 0

|, {(s1) X| \ :
j

i=2

si+ U 0
|, {(s2) X| \ :

j

i=3

si+
} } } X|(sj&1+sj ) U 0

|, {(sj&1) X|(sj ) U 0
|, {(sj ) (2.13)
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In (2.13), we wrote U 0
|, {(s) :=e&i{sH|, and X|(s) := g(x, s)+[[P| ,

g(x, s)], P|]. We will show that, ��
j=0 E |(x| T j (s) | y) | converges and

has the rapid decay for sufficiently small s>0, and that how small s should
be does not depend on :. Then, the conclusion follows by the semigroup
property of U� A

|, {(s) (we have to consider U� A
|, {(t, s) which is defined

similarly to (2.12) except U� A
|, {(0) .=. is replaced by U� A

|, {(t, t) .=.) and
the following simple fact: let A| , B| be bounded operators on l 2(Z) which
satisfy (:>2)

E |(x| A| | y) |�(x& y) &:

E |(x| B| | y) |�(x& y) &:, x, y # Z

Then, the operator C| :=A|B| satisfies

E |(x| C| | y) |�C (x& y) &:�2

for some constant C>0.
The integral kernel of (x| Tj | y) can be written as:

(x| Tj | y)=(&i) j |
0�� j

i=1 si�s
ds1 ds2 } } } ds j

_ :
z1 ,..., zj

(x| U 0
|, { \s& :

j

i=1

si+ X| \ :
j

i=1

si+ |z1)

_(z1 | U 0
|, {(s1) X| \ :

j

i=2

si+ |z2)

} } } (zj&1 | U 0
|, {(sj&1) X|(s j ) |zj)(zj | U 0

|, {(sj ) | y) (2.14)

In order to use Fubini's theorem, we take expectation at first and consider:

T� j := :
z1 , z2 ,..., zj # Z

E }(x| U 0
|, { \s& :

j

i=1

si+ X| \ :
j

i=1

si+ |z1) }
_} (z1 | U 0

|, {(s1) X| \ :
j

i=2

si+ |z2) }
} } } |(zj&1 | U 0

|, {(sj&1) X|(sj ) |zj) | |(zj | U 0
|, {(sj ) | y) | (2.15)
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By Ho� lder's inequality,

T� j� :
z1 , z2 ,..., zj # Z \E } (x| U 0

|, { \s& :
j

i=1

si+ X| \ :
j

i=1

si+ |z1) }
j+1

+
1�( j+1)

_\E } (z1 | U 0
|, {(s1) X| \ :

j

i=2

si+ |z2) }
j+1

+
1�( j+1)

} } } (E |(zj&1 | U 0
|, {(sj&1) X|(sj ) |zj) | j+1)1�( j+1)

_(E |(zj | U 0
|, {(sj ) | y) | j+1)1�( j+1)

We use the results in (refs. 1 and 2):

E |(x| U 0
|, {(s) | y) |�C1e&+ |x& y| (2.16)

E |(x| P| | y) |�C1e&+ |x& y| (2.17)

for sufficiently large *>0, where constants C1>0 and +>0 are indepen-
dent of x, y # Z, s # [0, 1], and {>0. We used the fact that, in this case,
H| has only pure point spectrum.(9, 20) By (2.16), (2.17), Ho� lder's inequality,
and the boundedness of U 0

|, {(s) and X|(s), we can deduce that, when *>0
is sufficiently large,

E |(x| U 0
|, {(s) X|(t) | y) |�C2e&+ |x& y| (2.18)

for some constant C2>0 which is also independent of x, y # Z, s, t # [0, 1],
and {>0. Moreover, since U 0

|, {(s) and X|(t) are bounded,

E } (x| U 0
|, { \s& :

j

i=1

si+ X| \ :
j

i=1

si+ |z1) }
j+1

�C j
3C2e&+ |x&z1 |

for some constant C3>0. By estimating the other terms in the same way,

T� j� :
z1 , z2 ,..., zj # Z

C j�( j+1)
3 C 1�( j+1)

2 e&+�( j+1) |x&z1 |

_C j�( j+1)
3 C 1�( j+1)

2 e&+�( j+1) |z1&z2 |

} } } C j�( j+1)
3 C 1�( j+1)

2 e&+�( j+1) |zj&1&zj |C 1�( j+1)
1 e&+�( j+1) |zj& y|
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We notice that, for i=1, 2, 3, C 1�( j+1)
i �1, C j�( j+1)

i �1 if Ci�1, and
C1�( j+1)

i �Ci , C j�( j+1)
i �Ci if Ci>1. Therefore, by taking C4 :=

max(1, C1 , C2 , C3),

T� j� :
z1 ,..., zj # Z

C 2j+1
4 e&+�( j+1) ( |x&z1 |+|z1&z2 |+ } } } +|zj&1&zj |+|zj& y| )

�C 2j+1
4 :

z1 , z2 ,..., zj # Z

e&((+&=)�( j+1)) |x& y|

_e&=�( j+1) (|x&z1 |+|z1&z2 |+ } } } +|zj&1&zj |+|zj& y| )

For =>0 small, �x # Z e&= |x|�4�=. We ignore e&=�( j+1) |zj& y|, and take the
sum in the order of zj , zj&1 ,..., z2 , z1 . The conclusion is

T� j �C 2j+1
4 \ :

z # Z

e&=�( j+1) |z|+
j

e&((+&=)�( j+1)) |x& y|

�C 2j+1
4 {4

=
( j+1)=

j

e&((+&=)�( j+1)) |x& y|

In general, for +>0, :>0, e&+x�(:�+): e&:x&:. Therefore, for arbitrary
:>0,

T� j�C 2j+1
4 \4

=
( j+1)+

j

\ j+1
+&=

:+
:

e&: |x& y|&:

We return to (2.14). We interchange E with �z1 , z2 ,..., zj # Z and compute

E |(x| Tj | y) |�|
0�� j

i=1 si�s
ds1 ds2 } } } dsj C 2j+1

4

_\4
=

( j+1)+
j

\ j+1
+&=

:+
:

e&: |x& y|&:

�
s j

j !
C 2j+1

4 \4
=

( j+1)+
j

\ j+1
+&=

:+
:

e&: |x& y| &:

By taking C5 :=(:�(+&=)): e&:C4 , and C6 :=4C 2
4 �=,

E |(x| Tj | y) |�
s j

( j+1)!
( j+1): C j

6 C5( j+1) j+1 |x& y|&:

By Stirling formula, for some constants C7 , C8>0,

(C7n)n�n!�(C8n)n
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Therefore,

E |(x| Tj | y) |�( j+1): C j
6s jC &( j+1)

7 C5 |x& y|&:

�( j+1): \C6

C7+
j C5

C7

s j |x& y| &:

Hence, for sufficiently small s>0, there exists a constant C:>0 such that

:
�

j=1

E |(x| Tj | y) |�C: |x& y|&:

By Fubini's theorem,

E |(x| U� A
|, {(s) | y) |=E } (x| :

�

j=0

Tj | y) }�E :
�

j=0

|(x| Tj | y) |

= :
�

j=0

E |(x| Tj | y) |�C: |x& y|&:

(2) When d>1, we write j as j=dk+l, k # N, l=0, 1,..., d&1, and
write the sum ��

j=1 as ��
j=1=� j#l, mod d ��

k=1 . Then, it is sufficient to use
the following estimates instead of (2.18):

E |(x| (U 0X )(U 0X ) } } } (U 0X )

d

| y) |�Ce&+ |x& y| (2.19)

E |(x| (U 0X )(U 0X ) } } } (U 0X )

l(<d )

(U0 XU0X ) | y) |�Ce&+ |x& y| (2.20)

(we omit the si -dependence). The rest is similar. K

Lemma 2.3. For sufficiently large *>0, U|, {(s), U A
|, {(s) and

P|(s) # S� .

Proof. It is straightforward to see U|, {(s), U A
|, {(s) and P|(s) satisfy

(CR). Then, P| # S� follows from (2.17) and boundedness of P| on l 2(Zd ).
U|, {(s), U A

|, {(s) # S� follows from Lemma 2.2 and their unitarity. K

Lemma 2.4. j|, { , j A
|, { is well-defined for P-a.e. |.

Proof. It follows easily from Lemma 2.1(1) and 2.3. K

The following lemma is not necessary to prove our theorem. However,
it gives us another point of view of the charge transport.
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Lemma 2.5.

j|=T((U*|(1) xU|(1)&x) P|), for P-a.e. | (2.21)

Remarks. (1) In the RHS of (2.21), (U*|(1) xU|(1)&x) is at first
defined as a form on C0 :=[. # l 2(Zd ) : .(x)=0, for sufficiently large |x|],
and then extended to an operator.

(2) We can consider (U*|(1) xU|(1)&x) stands for the displacement
of electrons from t=0 to t=1. Therefore, multiplying P| by this operator,
and taking trace per unit volume corresponds to the measurement of the
displacement of electrons below the Fermi energy.

Proof. At first, we note that

the RHS of (2.21)

=T \|
1

0
dt U*|(t) i[H|(t), x] U|(t) P|+

= lim
|4| � �

1
|4|

trace \/4 |
1

0
dt U*|(t) i[H|(t), x] U|(t) P|/4+

Thus, it suffices to show that we can interchange �1
0 dt with lim |4| � � , and

�1
0 dt with trace. By Lemma 2. (2), 2.3,

T(U*|(t) i[H|(t), x] U|(t) P|)

=T(P| U*|(t) i[H|(t), x] U|(t) P|)

= lim
|4| � �

1
|4|

trace(/4 P| U*|(t) i[H|(t), x] U|(t) P|/4)

for P-a.e. |. A| :=U*|(t) i[H|(t), x] U|(t) is bounded on l 2(Zd ). Then,
by decomposing A| into the linear combination of four unitrary operators
[17, Chapter 6], we can assume A| is unitary (we should note it still
satisfies (CR)). By using |trace(AB)|�trace(AA*)1�2 trace(B*B)1�2 (where
A, B belong to Hilbert�Schmidt class),

} 1
|4|

trace(/4 P|A|P| /4) }
�

1
|4|

trace(/4P| A|A*|P| /4)1�2 trace(/4P|P| /4)1�2

=
1

|4|
|trace(/4 P|/4)|
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Therefore,

} 1
|4|

trace(/4P|U*|(t) i[H| , x] U|(t) P| /4) }
�&U*|(t) i[H| , x] U|(t)&op

1
|4|

trace(/4 P| /4)

�C
1

|4|
trace(/4 P|/4) (2.22)

where the constant C>0 can be taken independent of t # [0, 1]. & }&op is
the operator norm on l 2(Zd ). Since the RHS of (2.22) converges to
CT(P|) for P-a.e. |, the LHS of (2.22) is uniformly bounded w.r.t.
t # [0, 1] for |4| sufficiently large. Then, by the dominated convergence
theorem, we can interchange �1

0 dt with lim |4| � � . Next,

|
1

0
dt trace(/4P| U*|(t) i[H|(t), x] U|(t) P| /4)

=|
1

0
dt :

N

n=1

(.n , (/4 P|U*|(t) i[H|(t), x] U|(t) P|/4) .n)

where [.n(x)]N
n=1 is the complete orthonormal basis of l 2(4). Since �N

n=1

is a finite sum, we can interchange �1
0 dt with trace. K

3. PROOF OF THEOREM 1.1

We defer the proof of Proposition 1.2 which is a little complicated,
and prove Proposition 1.3 first.

Proof of Proposition 1.3. We decompose the integrand of
(1.11)=I+II, where

I=i{T(U |, {
A*(s)[H|(s), x] U A

|, {(s) P|)

II=&T(U |, {
A*(s)[[P4 |(s), P|(s)], x] U A

|, {(s) P|)

Since U A
|, {(s) satisfies the following intertwining property(6):

U A
|, {(s) P|=P|(s) U A

|, {(s) (3.1)
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We can simplify I:

I=i{T(U |, {
A*(s)[H|(s), x] P|(s) U A

|, {(s))

=i{T(P|(s)[H|(s), x] P|(s))

=i{T(V(s) P|[H| , x] P| V*(s))

=i{T(P|[H| , x] P|)

In the second and fourth equality, we used Lemma 2.1(2). Thus, by
Proposition 2 in (ref. 6), I=0 for P-a.e. |. As for II, by using intertwining
property (3.1) and Lemma 2.1(2),

II= &T(U |, {
A*(s)[[P4 |(s), P|(s)], x] P|(s) U A

|, {(s))

= &T(P|(s)[[P4 |(s), P|(s)], x] P|(s))

=iT(P|[[[P| , g(x, s)], P|], x] P|)

=iT(P|[[P| , g(x, s)], [P| , x]] P|)

= &2 Im T(P|[[P| , g(x, s)], [P| , x]] P|)

Therefore II=0, because (x |P| | y) is real due to the time-reversal
invariance. K

We shall compare U|, {(s) with U A
|, {(s), and prove a kind of adiabatic

theorem (Lemma 3.2) which is necessary to prove Proposition 1.2. Let
0|, {(s) :=U |, {

A*(s) U|, {(s). Then, it solves the following integral equation.

0|, {(s)=I&|
s

0
dt U |, {

A*(t) X|(t) U A
|, {(t) 0|, {(t) (3.2)

where X|(t) :=[P4 |(t), P|(t)] (it is different from what is defined in the
proof of Lemma 2.2), and I is the identity operator. We shall estimate the
second term in the RHS of (3.2), and will show that it becomes small
in certain sense when { is large, basically along the argument in (refs. 6
and 13). At first we introduce

X� |(t) :=&
1

2?i |
1$

dz R|(z, t) X|(t) R|(z, t) (3.3)

where R|(z, t) :=(H|(t)&z)&1. 1$ :=1"1� $ , where 1/C is a rectangle
whose vertices are located at =F+ia, &N+ia, &N&ia, and =F&ia (N is
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taken sufficiently large such that inf _(H|)>&N ). And 1� $ :=[=F+ic :
&$�c�$], for some $ # (0, a). Then, by direct computation, we have

[H|(t), X� |(t)]=[X|(t), P|(t)]+
1

2?i _X|(t), |
1� $

dz R|(z, t)&
where �1� $

dz R|(z, t) is defined to be

|
1� $

dz R|(z, t) :=s-lim
' a 0 \|

=F&i'

=F&i$
+|

=F+i$

=F+i' + R|(z, t) dz

We used the fact [9, Chapter 9]: P[| # 0 : =F is an eigenvalue of H|]=0.
We define:

S|(t) :=
1

2?i
[X|(t), T|(t)] (3.4)

T|(t) :=|
1� $

dz R|(z, t) (3.5)

Let Q|(t) :=I&P|(t), and Q| :=Q|(0). The second term of (3.2) multiplied
by Q| from the left is computed as in the same way in (ref. 6, Lemma 2.5).
The result is:

Q| |
s

0
dt U |, {

A*(t) X|(t) U A
|, {(t) 0|, {(t)

=&
i
{

Q| {[U |, {
A*(t) X� |(t) U A

|, {(t) P|0|, {(t)] t=s
t=0

&|
s

0
dt U |, {

A*(t) X� |(t) U A
|, {(t) P|04 |, {(t)

&|
s

0
dt U |, {

A*(t)(X�4 |(t)&[P4 |(t), X� |(t)]) U A
|, {(t) P| 0|, {(t)=

&Q| |
s

0
dt U |, {

A*(t) S|(t) U A
|, {(t) 0|, {(t) (3.6)

We estimate the last term in the RHS of (3.6) which is the additional term
we mentioned at the end of Section 1.

Lemma 3.1. T|(t) # S. Moreover, for :, ; which satisfy 1�:<2,
:&1<;<1&(1�p), there exists a constant C:;>0 such that for suf-
ficiently large *>0,

E |(x| T|(t) | y) |:�C:; $ ; e&+ |x& y| (3.7)
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Proof. Let z==F+i', ' # (&$, $).

E |(x| T|(t) | y) | :�(2$):&1 E |
1� $

dz |(x| R|(z, t) | y) | :

=(2$):&1 E |
$

&$
d' |(x| R|(=F+i', t) | y) |:

�(2$):&1 E |
$

&$
d' '&(:&;) |(x| R|(=F+i', t) | y) | ;

(3.8)

where 0<;<1&(1�p). In the first inequality, we used the Jensen's
inequality. If :&;<1, we use the exponential decay estimates of Green's
function derived in (ref. 3):

E |(x| R|(=F+i', t) | y) | ;�Ce&+ |x& y| (3.9)

for 0<;<1&(1�p) and *>0 is sufficiently large. Hence we obtain

the RHS of (3.8)�C$ ; e&+ |x& y| K

By using above estimates, we prove 0|, {(s) is close to identity in cer-
tain sense when { is large (adiabatic theorem). Usually, adiabatic theorem
is stated as(6, 12, 13)

U{(s)=U A
{ (s)+O({&1), as { � �

in the operator norm. However, since there is no spectral gap in the cases
where Anderson localization takes place, our adiabatic theorem presented
below is rather weak.

Lemma 3.2. 0|, {(s) has the following form:

0|, {(s)=I+
1
{ {A1(s)+|

s

0
dt A2(t)=+|

s

0
dt B(t) (3.10)

A1= `
l

i=1

A (i)
1 , A2(t)= `

m

i=1

A (i)
2 (t), B(t)= `

n

i=1

B(i)(t) (3.11)

where,

(1) A(i)
1 , A (i)

2 (t) # S� and &A (i)
1 &S: , ; , &A (i)

2 (t)&S: , ; are all independent
of {>0, t # [0, 1].
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(2) There is an i0�n such that, B(i)(t) # S� for i{i0 , where
&B(i)(t)&S: , ; are all independent of {>0, t # [0, 1]. And B(i0)(t)=T|(t)
which is defined in (3.5) and satisfies (3.7).

Remark. We can not deduce the adiabatic theorem in the operator
norm from (3.10). What Lemma 3.2 tells us is that

lim
{ � �

E(., (U|, {(s)&U A
|, {(s)) �)=0 (3.12)

lim
{ � �

E &(U|, {(s)&U A
|, {(s)) .&2

2=0 (3.13)

for ., � # l 2(Zd ). & }&2 is the l 2(Zd )-norm. The rate of convergence is {&:,
where :<(1+(2�;)(d+1))&1, if *>*0(;), 0<;<_=1&(1�p). Thus
(3.12), (3.13) can be regarded as a weak form of the adiabatic theorem. On
the other hand, we should note that the adiabatic theorem in the operator
norm is proved in (ref. 5) without gap condition in general setting,
provided Range P(s) is finite dimensional.

Proof. It suffices to estimate the RHS of (3.6), since we can estimate
the second term of (3.2) multiplied by P| from the left in the same manner.
We will show the first term of (3.6) is the component of A1 in (3.10), and
the second and third terms are the components of A2(t). In order to do
this, we have to check the operators appearing in the first, second and third
terms in (3.6) satisfy (1) in the statement of Lemma 3.2. We have only to
check 04 |, {(t) and X�4 |(t), because for the rest, it is the direct conclusion of
Lemma 2.3. By (3.2), 04 |, {(t) can be written as

04 |, {(s)=&U |, {
A*(s) X|(s) U A

|, {(s) 0|, {(s)

By Lemma 2.3, the RHS of this equation obviously satisfies (1) in the state-
ment of Lemma 3.2. As for X�4 |(s), it has the following form,

X�4 |(s)= &
1

2?i |
1$

dz(R4 |(z, s) X|(s) R|(z, s)

+R|(z, s) X4 |(s) R|(z, s)+R|(z, s) X|(s) R4 |(z, s))

We note that 1$ does not contain the spectrum of H| . Thus R|(z, s)
satisfies the exponential decay estimate which can be shown by Combes�
Thomas argument (1, 8) for z # 1$ :

|(x| R|(z, s) | y) |�Ce&+ |x& y|
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Then, the conclusion follows from the explicit form

R4 |(z, s)=iV(s)[ g(x, s), R|(z, 0)] V*(s)

P4 |(s)=iV(s)[ g(x, s), P|] V*(s)

the boundedness of R|(z, 0) and P| , and the Jensen's inequality. That the
last term of (3.6) satisfies (2) in the statement of Lemma 3.2 follows easily
from Lemma 2.3, 3.1. K

We are at the stage of the proof of Proposition 1.2.

Proof of Proposition 1.2. We shall compare the following two
quantities:

j|, { :=i{ |
1

0
ds T(U*|, {(s)[H|(s), x] U|, {(s) P|)

j A
|, { :=i{ |

1

0
ds T(U |, {

A*(s)[H A
|(s), x] U A

|, {(s) P|)

We compute

j|, {=i{ |
1

0
ds T([U*|, {(s) H|(s), x] U|, {(s) P|)

&i{ |
1

0
ds T([U*|, {(s), x] H|(s) U|, {(s) P|)

Since [U*|, {(s) H|(s), x], [U*|, {(s), x] # S� , the above two terms are both
well-defined by Lemma 2.1(1). Here, we defined the product of operators
by their integral kernels, since [U*|, {(s) H|(s), x] and [U*|, {(s), x] could
be unbounded (Remark after Lemma 2.1). We substitute the Schro� dinger
equation (1.4):

j|, {=i{ |
1

0
ds T \_&

i
{

d
ds

U*|, {(s), x& U|, {(s) P|+
&i{ |

1

0
ds T \[U*|, {(s), x]

i
{

d
ds

U|, {(s) P|+
=|

1

0
ds T \ d

ds
([U*|, {(s), x] U|, {(s) P|)+
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Because (d�ds)([U*|, {(s), x] U|, {(s) P|) is the sum of two operators, and
each operators are products of operators which belong to S� , we can inter-
change �1

0 ds with �0 dP. Therefore,

j|, {=T([U*|, {(1), x] U|, {(1) P|)

And in the same manner,

j A
|, {=T([U |, {

A*(1), x] U A
|, {(1) P|)

To compare j A
|, { with j|, { , we substitute U A

|, {(s)=U|, {(s) 0*|, {(s) into the
above equation.

j A
|, {=T([0|, {(1) U*|, {(1), x] U|, {(1) 0*|, {(1) P|)

=T(0|, {(1)[U*|, {(1), x] U|, {(1) 0*|, {(1) P|)

+T ([0|, {(1), x] 0*|, {(1) P|)

=: C+D

We will show that C= j|, {+o(1) and D=o(1) as { � �. This concludes
the proof. By subtracting the following two equations,

P| 0|, {(s)&P| 0|, {(s) P|=P|0|, {(s) Q|

0|, {(s) P|&P| 0|, {(s) P|=Q| 0|, {(s) P|

we obtain

P|0|, {(s)&0|, {(s) P|=P| 0|, {(s) Q|&Q|0|, {(s) P|

=: W(s)

where

W(s) :=P| _1
{ {A1(s)+|

s

0
dt A2(t)=+|

s

0
dt B(t)& Q|

&Q| _1
{ {A1(s)+|

s

0
dt A2(t)=+|

s

0
dt B(t)& P|
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Then,

T(0|, {(1)[U*|, {(1), x] U|, {(1)(0*|, {(1) P|&P| 0*|, {(1)))

=
1
{

T(0|, {(1)[U*|, {(1), x] U|, {(1)(Q|A1*(1) P|&P|A1*(1) Q|))

+
1
{ |

1

0
ds T(0|, {(1)[U*|, {(1), x]

_U|, {(1)(Q| A2*(s) P|&P| A2*(s) Q|))

+|
1

0
ds T(0|, {(1)[U*|, {(1), x]

_U|, {(1)(Q| B*(s) P|&P| B*(s) Q|))

:=E1+E2+F (3.14)

By Lemma 2.1(1), 3.2, there exist constants ;>0, C;>0 such that F in
(3.14) satisfies |F |�C;$ ;. Therefore, for arbitrary small =>0, we have
|F |<= by taking $>0 sufficiently small. After fixing such $>0, we let {>0
sufficiently large and obtain |E1 |, |E2 |<= (by using Lemma 2.1(1), 3.2
again). Hence

T(0|, {(1)[U*|, {(1), x] U|, {(1)(0*|, {(1) P|&P| 0*|, {(1)))=o(1)

and therefore,

C=T(0|, {(1)[U*|, {(1), x] U|, {(1) P| 0*|, {(1))+o(1)

as { � �. By Lemma 2.1(2), it follows that

C=T(P| 0*|, {(1) 0|, {(1)[U*|, {(1), x] U|, {(1) P|)+o(1)

=T(P|[U*|, {(1), x] U|, {(1) P|)+o(1)= j|, {+o(1)

It remains to show D=o(1). In fact, by Lemma 3.2

D=T([0|, {(1), x] 0*|, {(1) P|)

=
1
{

T([A1(1), x] 0*|, {(1) P|)+
1
{ |

1

0
ds T([A2(s), x] 0*|, {(1) P|)

+|
1

0
ds T([B(s), x] 0*|, {(1) P|)

In the same manner as in C, we obtain D=o(1). K
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